

IPCC Special Report on Global Warming of 1.5°C

Avoided Impacts and Risks: Guiding AMBITION in mitigation and adaptation

Impacts of global warming 1.5°C: Where should we go?

At 1.5°C compared to 2°C:

- Less extreme weather where people live, including extreme heat and rainfall
- By 2100, global mean sea level rise will be around 10 cm lower but may continue to rise for centuries
- 10 million fewer people exposed to risk of rising seas (...less coastal ecosystems exposed)

Jason Florio / Aurora Photos

Where do we want to go?

At 1.5°C compared to 2°C:

- Lower impact on biodiversity and species
- Smaller reductions in yields of maize, rice, wheat crop yields
- Global population exposed to water shortages is up to 50% less (also less water shortages for ecosystems)

Terrestrial biodiversity

P. Smith et al. 2018

At 1.5°C compared to 2°C:

Lower impacts on biodiversity and species

Where do we want to go?

At 1.5°C compared to 2°C:

- Lower risk to fisheries & the livelihoods that depend on them
- Up to several hundred million fewer people exposed to climate-related risk and susceptible to poverty by 2050

People exposed to Sea Level Rise, assuming there is no adaptation or protection

Upper values correspond to the 50th percentile; values below correspond to the 5th to 95th percentile range

Where do we want to go?

At 1.5°C and 2°C:

 Disproportionately high risk for Arctic, dryland regions, small island developing states and least developed countries

At 1.5°C compared to 2°C:

- Lower risks for health, livelihoods, food security, water supply, human security and economic growth
- A wide range of adaptation options can reduce climate risks; less adaptation needs at 1.5°C

....half a degree matters... every bit of warming matters.... ... for ecosystems, biodiversity and humankind

...less loss and damage at 1.5°C

Confidence level: M, medium; H, high; VH; very high

Vulnerable ecosystem identified in AR5 and SR1.5

Warm water coral reefs under various pressures

Even in a 1.5°C warmer world.... high risk of losing 70 to 90% of coral reefs and their services to humankind; ... even higher losses at 2°C

2016

Vulnerable ecosystems identified in AR5 and SR1.5:

Arctic summer sea ice systems

1.5°C

≥2°C

RCP 2.6 ambitious mitigation

RCP 8.5 business as usual

Northern Hemisphere September sea ice extent (average 2081–2100)

29 (3) > 1 in 10 1 in 100 years CMIP5 multi-model ice-free years iceaverage 1986-2005 at 1.5°C free at CMIP5 multi-model average 2081-2100 2°C CMIP5 subset average 1986-2005 CMIP5 subset average 2081-2100

1.5°C

Sea level rise beyond 2100 may challenge biological and human systems:

High ambition mitigation needed

....affecting habitat, freshwater resources, human society through flood events

Coming close to Paleo-findings....

5-9 m: ...during the last interglacial (Eemian, 125.000 ya, at 0.7-2°C above pre-industrial)

>7m: ...last time when the atmosphere had 400 ppm CO₂ (in Pliocene, 3-5 Mya)

Knutti et al., Ngeo 2015

TO BE ASSESSED IN AR6

Avoided impacts: guiding ambition in adaptation and mitigation

How do we get there?

- To limit warming to 1.5°C, CO₂ emissions fall by about 45% by 2030 (from 2010 levels compared to 20% for 2°C
- To limit warming to 1.5°C, CO₂ emissions would need to reach 'net zero' around 2050
 - \longrightarrow Compared to around 2075 for 2°C
- Reducing non-CO₂ emissions would have direct and immediate health benefits

Different pathways and mitigation strategies could limit global warming to 1.5°C, variable needs for negative emission technologies

Ambitious emissions reduction minimizes the need for carbon dioxide removal, e.g. BECCS

- Co-benefits for
 - Human health
 - Ecosystem restoration and carbon storage (soils and biomass)
 - Biodiversity conservation
 - Reduced competition for land
 - Food security for humankind

SUSTAINABLE GEALS

1.5°C facilitates reaching SDGs

Indicative linkages between mitigation and sustainable development using SDGs (the linkages do not show costs and benefit)

1.5°C linked to reaching SDGs

Length shows strength of connection

Shades show level of confidence

Limiting warming to 1.5°C

Would require rapid, far-reaching and unprecedented changes in all systems

- → A range of technologies and behavioural changes
- → Scale up in annual investment in low carbon energy and energy efficiency by factor of five by 2050
- → Renewables supply 70-85% of electricity in 2050
- → Coal declines steeply, ~zero in electricity by 2050
- → Oil and especially gas persist longer gas use rises by 2050 in some pathways
- Deep emissions cuts in transport and buildings
- Changes in land use and urban planning

The Paris agreement provides a sense of urgency:

Overcoming societal and political inertia, accelerating transformation....

A common response even among those who (should) know...including us!?

Feasibility at various levels:

- Keeping warming to 1.5 according to the laws of chemistry and physics ---- yes
- Technologies to support mitigation and adaptation measures ---- yes
- Redirection of financial flows ---- yes (stopping fossil fuel subsidies)
- Informed policy leading and directing societal transformation ---- may be?

 BOTTLE NECK

Half a degree... every bit of warming matters

Each year matters

Each choice matters

Sixth Assessment Cycle (AR6)

Special Reports

- 1. October 2018 Special Report on Global Warming of 1.5 °C (SR15)
- 2. August 2019 Climate Change and Land (SRCCL)
- 3. September 2019 Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC)

Methodology Report update

May 2019: 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories

AR6 Main Report

2021: Working Group I, II, and III contribution to the Sixth Assessment Report

April 2022: Synthesis Report of the Sixth Assessment Report

3 Special Reports

^{*} Dates are subject to change

IPCC Writing and Review Process

Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC)

- 1. Framing and Context of the Report
- 2. High Mountain Areas
- 3. Polar Regions
- 4. Sea level rise and implications for low lying islands, coasts and communities
- 5. Changing ocean, marine ecosystems, and dependent communities
- 6. Extremes, abrupt changes and managing risks
- + Cross-chapter box: Low lying islands and coasts

Outline of Special Report on Climate Change and Land (SRCCL)

Summary for Policy Makers Technical Summary

Chapter 1: Framing and Context

Chapter 2: Land-Climate Interactions

Chapter 3: Desertification

Chapter 4: Land Degradation

Food Security Chapter 5:

Chapter 6: Interlinkages between desertification, land

degradation, food security and GHG fluxes: Synergies,

trade-offs and Integrated Response Options

Chapter 7: Risk management and decision making in relation to

sustainable development

Boxes, Case Studies and FAQs

Working Group II Outline

Chapter 1: Point of departure and key concepts

SECTION 1: RISKS, ADAPTATION AND SUSTAINABILITY FOR SYSTEMS IMPACTED BY CLIMATE CHANGE

Chapter 2: Terrestrial and freshwater ecosystems and their services

Chapter 3: Ocean and coastal ecosystems and their services

Chapter 4: Water

Chapter 5: Food, fibre, and other ecosystem products

Chapter 6: Cities, settlements and key infrastructure

Chapter 7: Health, wellbeing and the changing structure of communities

Chapter 8: Poverty, livelihoods and sustainable development

Working Group II Outline (cont'd)

SECTION 2: REGIONS

Chapter 9: Africa

Chapter 10: Asia

Chapter 11: Australasia

Chapter 12: Central and South America

Chapter 13: Europe

Chapter 14: North America

Chapter 15: Small Islands

Each chapter to cover regional oceans and specific land ocean interactions

SECTION 3: SUSTAINABLE DEVELOPMENT PATHWAYS: INTEGRATING ADAPTATION AND

MITIGATION

Chapter 16: Key risks across sectors and regions

Chapter 17: Decision-making options for managing risk

Chapter 18: Climate resilient development pathways

integrating sectors, regions and updating from special reports

Cities and settlements by the sea chs. 3,6,9-15,16-18, SROCC

Deserts, semi-arid areas, and desertification

chs. 2,4,5,9-14, SRCCL

Mediterranean region, chs. 3,6,9-15,16-18, SROCC, SRCCL

Mountains, chs. 2,9-14, SROCC

Polar regions, chs. 2-8,10-15, SROCC, SRCCL

Tropical forests, chs. 2,9,11,12, SRCCL

All Authors, Review Editors selected based on government and bureau nominations **Become involved**: e.g. as Expert Reviewer, Contributing Author, see ipcc.ch

Do not forget....

Half a degree... every bit of warming matters

Each year matters

Each choice matters

Thank you for your attention

For more information:

Website: http://ipcc.ch/

IPCC Secretariat: ipcc-sec@wmo.int

IPCC Press Office: ipcc-media@wmo.int

Find us on:

¶ @IPCCNews

IPCC_Climate_Change

http://www.slideshare.net/ipcc-media/ presentations

https://www.youtube.com/c/ipccgeneva

@IPCC_CH

https://www.linkedin.com/company/ipcc

https://www.flickr.com/photos/ipccphoto/sets/

https://vimeo.com/ipcc